|
Dissertations |
|
|
1
|
-
RENATO ELIAS DOS SANTOS D'AVILA JUNIOR
-
não há
-
Advisor : JULIANA SANCHES
-
COMMITTEE MEMBERS :
-
JULIANA SANCHES
-
BRUNO BROGNI UGGIONI
-
SIMONE MAFFINI CEREZER
-
SIMONE FRANCISCO RUIZ
-
Data: Mar 27, 2024
Ata de defesa assinada:
-
-
Show Abstract
-
In this work, we present a didactic sequence for the teaching of probability, grounded in the origin of Probability Theory, dating back to games of chance. Historically, players and mathematicians engaged in analyses, comparisons, strategies, and calculations related to the frequencies of occurrences in gambling games. Understanding this historical context suggests that the use of games can be a suitable resource for Probability teaching, providing a dynamic and engaging approach. The elaborated didactic sequence comprises four sessions, proposing games aimed at conveying fundamental probability concepts. The objective is to create an educational experience that allows students not only to comprehend theoretically but also to experience in practice the concepts of probability, bets, and payouts against the house. This approach aims to stimulate students' reflection on mathematical concepts, providing a deeper and more meaningful understanding of probabilistic concepts while involving them in practical and challenging situations. It encourages the application of mathematical knowledge in everyday contexts, such as gambling. Thus, the didactic sequence represents not just a set of activities but a tangible outcome of this dissertation, reflecting innovation and the pursuit of effective pedagogical strategies in Probability teaching.
|
|
|
2
|
-
JOSADAQUE DA SILVA NENÊ
-
Exploring Computational Thinking with Emphasis on Developing Algebraic Thinking in Basic Education
-
Advisor : CLAUDIOMIR FEUSTLER RODRIGUES DE SIQUEIRA
-
COMMITTEE MEMBERS :
-
LEONARDO BARICHELLO
-
CARINA LOUREIRO ANDRADE
-
CLAUDIOMIR FEUSTLER RODRIGUES DE SIQUEIRA
-
Data: May 8, 2024
Ata de defesa assinada:
-
-
Show Abstract
-
The difficulties of thinking algebraically and understanding the concept of variable are recurrent, and can be evidenced in the students' lack of understanding of mathematical entities, such as the use of a letter to represent any number. As a result, failures occur from Basic Education to higher education. To alleviate this difficulty in Basic Education, this research seeks to contribute to improving the development of Algebraic Thinking based on teaching and learning experiences that explore Computational Thinking (CT) in Basic Education. In this sense, different didactic strategies for constructing algebraic language were used based on CT experimentation aimed at the development and consolidation of Algebraic Thinking. Such an exploratory CT approach to the development of Algebraic Thinking had the advantage of offering an intermediate step between the “concrete” and abstraction, as the concepts of variables and the need for symbolic representation for arbitrary or unknown quantities are introduced via algorithms to from concrete situations. The activities were applied to a seventh-year elementary school class in the municipal network of Cachoeirinha - Rio Grande do Sul. The class is made up of teenagers who, for the most part, have not yet had contact with the algebraic language. As results, it was observed that there is a relationship between activities that explore CT and the manifestation of Algebraic Thinking. Students who were able to develop the pillars of CT when solving a problem manifested elements that characterize Algebraic Thinking, therefore, this can be seen as an indication that the development of CT helps in the teaching and learning of Algebra in Basic Education, contrasting with what is described in the National Common Curricular Base. As indicated in the literature, it was found that the pillar of abstraction plays a fundamental role in the manifestation of Algebraic Thinking, and also that writing algorithms, even in natural language, allows checking whether the steps prior to writing them were carried out appropriately. . This approach also allowed us to verify which stage of Algebraic Thinking the student is at. A relationship was also observed between the capabilities of reading and interpreting text in problem solving and capabilities of decomposition, pattern recognition, abstraction and writing algorithms.
|
|
|
3
|
-
ADRIAN RUAN HORN DE BORBA
-
O USO DE COEFICIENTES EM EQUAÇÕES DE DUAS VARIÁVEIS E RESTRIÇÕES NO PLANO CARTESIANO: UMA ABORDAGEM LÚDICA E DIFERENCIADA NO SOFTWARE DESMOS
-
Advisor : NICOLAU MATIEL LUNARDI DIEHL
-
COMMITTEE MEMBERS :
-
NICOLAU MATIEL LUNARDI DIEHL
-
NUBIA LUCIA CARDOSO GUIMARAES
-
RODRIGO SYCHOCKI DA SILVA
-
Data: Jul 18, 2024
-
-
Show Abstract
-
This study presents the results of research conducted with a first-year high school class. The data were analyzed using Duval's Theory of Semiotic Representation Registers and the Desmos platform. A didactic sequence was developed with the aim of fostering a discussion, with the target audience, of concepts such as line, parabola, circumference, and variable constraints in interactive activities, such as a star game and image creation. The main objective of the research is to understand how this approach can make students more inquisitive, promoting the construction and expansion of meanings for mathematical concepts. The research involved the development of a didactic sequence in a high school class, assessing student participation with Desmos through questionnaires, software exploration, and the researcher's logbook. The research aims to observe the important role of interaction between registers in knowledge consolidation. The results obtained indicate learning of the concepts involved and a better understanding of mathematical objects. It is concluded that increased interaction between registers assists in knowledge consolidation.
|
|
|
4
|
-
THAÍS SCHULZ
-
RAZÃO E PROPORÇÃO ATRAVÉS DE RECEITAS DE FAMÍLIA: Uma proposta de sequência didática
-
Advisor : NICOLAU MATIEL LUNARDI DIEHL
-
COMMITTEE MEMBERS :
-
MARCUS VINICIUS DE AZEVEDO BASSO
-
CARINA LOUREIRO ANDRADE
-
NICOLAU MATIEL LUNARDI DIEHL
-
Data: Jul 24, 2024
-
-
Show Abstract
-
A escola na atualidade é um ambiente de estudo e socialização para crianças e jovens. Por isso, é necessário ter em mente que a interação social é parte fundamental do processo de aprendizagem escolar, como nos traz a teoria de Vigotski (2007, 2009, 2020), conhecida como sócio-interacionista. Paralelamente, por várias razões, são frequentes as queixas dos alunos sobre a (falta de) aplicabilidade dos conteúdos vistos na escola nas situações do cotidiano fora do ambiente escolar. Por esta razão, neste trabalho propõe-se uma sequência didática para o 7º ano do Ensino Fundamental, buscando conectar o conteúdo de Razão e Proporção com receitas das famílias dos alunos, partindo de algo afetivo e presente na sua vida fora da escola – as receitas – e investigando nelas os conteúdos citados através de atividades em trios, valorizando a interação entre os estudantes. Essa sequência didática foi aplicada em uma turma na qual a pesquisadora é professora titular, em uma escola pública de turno integral, no Rio Grande do Sul. A pesquisa caracteriza-se como investigação qualitativa proposta por Bodgan e Biklen (1999), e para a análise foram consideradas as atividades realizadas pelos alunos. Durante a aplicação, percebeu-se um aumento no interesse dos alunos sobre o conteúdo estudado e, analisando seus relatos e produções, foi possível verificar que os alunos se dedicaram mais às tarefas nos grupos e que perceberam que a interação com seus pares durante a realização das tarefas foi importante para sua aprendizagem. Por fim, sugere-se adaptações nos tempos de duração das atividades e que a sequência didática possa ser ajustada partindo das receitas de família dos alunos que realizarão as atividades.
|
|
|
5
|
-
NATHALIA FERREIRA DE MELLO
-
SEQUÊNCIAS NOS ANOS FINAIS DO ENSINO FUNDAMENTAL: Introdução da álgebra através de generalizações
-
Advisor : CARINA LOUREIRO ANDRADE
-
COMMITTEE MEMBERS :
-
ADILSON DE CAMPOS
-
CARINA LOUREIRO ANDRADE
-
JAQUELINE MOLON
-
Data: Jul 26, 2024
-
-
Show Abstract
-
A dificuldade apresentada pelos estudantes no estudo da álgebra nos anos finais do Ensino Fundamental é vivenciada pela pesquisadora em sua prática docente. Acredita-se que isso se dá pela não compreensão de alguns conceitos/elementos essenciais do Pensamento Algébrico. Com a intenção de amenizar tais dificuldades, esta pesquisa apresenta uma proposta didática que visa contribuir para o desenvolvimento do Pensamento Algébrico através da exploração de sequências com o uso de material concreto, estimulando a identificação e investigação de padrões existentes e ainda a formulação e formalização de generalizações. Essa proposta didática foi aplicada em uma escola da rede estadual de ensino no município de Caxias do Sul - RS, em uma turma do 7º ano do Ensino Fundamental, onde a pesquisadora é professora. Assim, este trabalho tem por objetivo investigar de que forma essa proposta didática pode facilitar o ensino de álgebra nos anos finais do Ensino Fundamental. Para isso, utilizou-se de uma metodologia qualitativa e para análise dos dados foram consideradas as atividades realizadas pelos estudantes e o diário de bordo da pesquisadora. Como resultados, observou-se, durante a aplicação, maior envolvimento dos estudantes nas atividades, percebendo-os mais ativos no processo de aquisição do seu próprio conhecimento, e satisfeitos de conseguir concluir as atividades, tornando o momento de aprendizagem algo mais prazeroso. Bem como, os dados obtidos através das respostas dos estudantes nas atividades, permitiram elencar elementos característicos do Pensamento Algébrico, desenvolvidos pela pesquisadora inspirada nos elementos de Fiorentini, Fernandes e Cristovão (2005), demonstrados por eles. Ainda como conclusão são trazidos alguns ajustes e modificações na proposta didática e algumas sugestões de trabalhos futuros.
|
|
|
6
|
-
WAGNER ROMERO DA SILVA
-
A inserir.
-
Advisor : CLAUDIOMIR FEUSTLER RODRIGUES DE SIQUEIRA
-
COMMITTEE MEMBERS :
-
JAQUELINE MOLON
-
CLAUDIOMIR FEUSTLER RODRIGUES DE SIQUEIRA
-
PATRÍCIA BORGES GOMES BISINELLA
-
Data: Aug 28, 2024
-
-
Show Abstract
-
A inserir.
|
|
|
7
|
-
ISAURA CARDOSO LINDE
-
APRENDER E ENSINAR GEOMETRIA DE MODO INTEGRADO À ARITMÉTICA E À ÁLGEBRA: POSSIBILIDADE PARA A CONSTRUÇÃO DE GENERALIZAÇÕES EM MATEMÁTICA
-
Advisor : CARINA LOUREIRO ANDRADE
-
COMMITTEE MEMBERS :
-
RAQUEL MILANI
-
CARINA LOUREIRO ANDRADE
-
NICOLAU MATIEL LUNARDI DIEHL
-
Data: Dec 2, 2024
-
-
Show Abstract
-
This dissertation analyzes the effectiveness of a didactic sequence that integrates concepts of arithmetic, geometry, and algebra for studying convex polygons and the relationships associated with their internal and external angles, offering opportunities for mathematical generalization. The sequence was designed to start with simple tasks and progressively increase in difficulty, aiming to create a participatory and exploratory
learning environment that fosters competencies such as critical thinking, problem- solving, and autonomy. This sequence was implemented in an 8th-grade class at a
public school in the municipality of Canoas-RS, where the researcher works as a teacher. The proposal encouraged using MDF-based concrete materials produced by the students with the assistance of GeoGebra and a laser cutter, providing an experimental and interactive approach to explore geometric concepts, arithmetic properties, and algebraic formalizations. Beyond investigating students' abilities to construct generalizations and explore mathematical relationships, this study aimed to evaluate the impact of this methodology on student engagement and motivation, encouraging comprehension of mathematical properties through experimentation and critical reflection. This qualitative research analyzed data collected through observations and student records. The use of exploratory activities and the integration of different areas of mathematical knowledge proved to be promising strategies for enriching teaching and learning processes and promoting competencies outlined by the BNCC, such as critical thinking and problem-solving.
|
|
|
8
|
-
JOELMIR PEREIRA DE VARGAS
-
Statistics and Conscious Consumption: a contextualized didactic proposal for the 9th grade of elementary school
-
Advisor : SIMONE MAFFINI CEREZER
-
COMMITTEE MEMBERS :
-
DANIELA MÜLLER DE QUEVEDO
-
CARINA LOUREIRO ANDRADE
-
SIMONE MAFFINI CEREZER
-
Data: Dec 9, 2024
-
-
Show Abstract
-
This dissertation presents a contextualized didactic proposal for teaching statistics in the 9th grade of elementary school, focusing on conscious consumption, aligned with the 12th Sustainable Development Goal (SDG) of the United Nations: "Ensure sustainable consumption and production patterns." The main goal is to emphasize the importance of statistical education to the students being able in reading, interpreting, constructing tables and graphs, as well as producing written texts using data communication, in a way to promote statistical literacy, an essential aspect of statistical education. Aiming the goals, the didactic proposal was structured into two teaching sequences: one about conscious water consumption and another on the relationship between consumption and waste production. Based on the proposal of "Landscapes of Investigation," according to Critical Mathematics Education perspective, which encourages students to explore and reflect not only on numbers of a mathematical problem but also on the social, political, and economic issues related to it. The teaching sequences use data coming from the school community itself, which fosters student engagement, since they work with information to their own reality, which also enables the teacher to better understand the students' reality.
|
|